
A Survey of Concurrency Control Algorithms
in Collaborative Applications

Sherief Alaa1, Karim Marzouq2

1sheriefalaa.w@gmail.com

2karim@apkallum.com

Abstract—Collaborative applications are becoming
more prevalent for a variety of reasons, most important
of which is the increased interest in remote work. In
addition to adapting the business processes to a remote
setting, designers of collaborative software have to
decide on how their software can be used
collaboratively. This paper discusses the two main
technologies used to enable network-based real- or
near-real-time collaborative software, namely
Operational Transformation and Conflict-free
Replicated Data Types. Recent developments in each
technology are discussed, as well as a brief overview of
their theoretical underpinnings.

Keywords—Operational Transformation,
Conflict-free replicated data type, eventual consistency,
OT, CRDT, collaborative text editing, strong eventual
consistency.

I. INTRODUCTION

Cloud based collaboration software applications
(groupware software) are the future of productivity
applications. They do not need to be installed on a
machine as the browser acts as a client. Moreover, the
client can automatically save to the cloud without the
need to backup important work, and allow multiple
users to edit concurrently (e.g. Google Docs,
Microsoft Word Online, etc...)[1], [2].

A groupware software differs from a multi-user
software. The former has a shared state which all
participants edit concurrently, while in the latter, each
user has their own state which is not editable
concurrently. To describe a certain software as a
groupware software, certain properties must be met
before it can be categorized as such: being real-time,
having an interactive user interface, being distributed,
and access-controlled [3].

Implementing such applications on the web proved to
be challenging due to a number of reasons, such as
network latency and consistency maintenance [4].
Several methods were introduced in the last three
decades to achieve expected user intentions while
concurrently editing documents and files. Choosing
one over the other is a challenge for technical teams.

In this paper, we introduce and discuss the
properties of two consistency control & concurrency
maintenance systems. The first system is Operation
Transformation (OT) by Ellis and Gibbs. It is a
system of operation logs where user actions are
transformed to atomic operations which are sent to a
central server to transform the shared state [3]. The
second system is Conflict-free Replicated Data Type
(CRDT). It is a state-based concurrency control
system where each participant has a copy of the state
and mutates locally, which are mathematically
guaranteed to automatically resolve conflicts upon
merging [5].

The rest of this paper is organized as follows. 4
sections. Section 2 gives an overview about
Operation Transformation (OT) and how it functions
using an example. In section 3, we explore the
various capabilities of OT. In section 4, we explore
CRDTs and give an overview on how it functions.
Finally, we conclude in section 5 with a conclusion.

II. OPERATION TRANSFORMATION

Operation Transformation (OT) is a system of
algorithms first invented in 1989 to achieve
concurrency control in collaborative editing software
[3].

Collaborative applications in the last decade have
adopted a client-server model. The server acts as a
central point to host the state of the shared document.
Having a central server simplifies implementation,

mailto:sheriefalaa.w@gmail.com
mailto:karim@apkallum.com
https://www.zotero.org/google-docs/?Nl6k88
https://www.zotero.org/google-docs/?uqWdGi
https://www.zotero.org/google-docs/?CS3o3X
https://www.zotero.org/google-docs/?AWUzuU
https://www.zotero.org/google-docs/?q7WUUx
https://www.zotero.org/google-docs/?sEQvx4

enables distribution, and facilities fault tolerance.
Thus, OT relies on a central server to contain a
shared state where multiple users can send their insert
and delete operations then the server propagates back
those changes to all other connected users. Multiple
users in different locations around the world can
perform edits concurrently. However, one server is
usually not enough to withstand the load. Due to that,
a replicated server architecture was introduced. The
application and shared documents are replicated at all
co-editing servers. Each user can directly edit the
replicated document locally and see their edits
instantaneously. Local edits are then sent
(propagated) to the remote replicated server which is
responsible for replaying the changes to other
replicas. The replay occurs through a series of
operations which transform the state of other replicas
[6].

A major challenge to OT is how to replay the
concurrent operations received by one replica to other
replicas and achieve consistency across all replicas.
To achieve consistency in a replicated architecture
three conditions must be met. The first is
convergence i.e. all replicas states must be equal after
applying a set of operations on them. The second is
causality-preservation, i.e. all operations must be
relayed by their order to satisfy the happened-before
relationship in distributed systems [7]. The third is
user intention preservation, i.e. any side effects of a
local operation on a local replica must be propagated
to all remote replicas so that all connected clients
have the same state [8].

To solve both convergence and intention preservation
in OT, the transformation function was invented [9].
There are two types of transformation functions as
described by Sun et al. [10], the first is Inclusion
Transformation (IT) and the second is Exclusion
Transformation (ET). The former includes data and
the latter excludes data from the shared state.
Original operations by clients are transformed locally,
keeping in mind other concurrent operations, so that
executing the new version on a remote replica will
have the same effect as executing on the local replica.
This method allows concurrent operations to be
executed in different order, thus achieving
commutativity and intention preservation. For OT to
achieve causality preservation, distributed system

techniques can be adopted outside of the
transformation function, i.e. Lamport's Clock
Condition [7]. See Figure 1 for an overview of the
lifecycle in an OT system.

Basic OT lifecycle starts out with a document that
may or may not contain a string, in the following
example the document contains the string “Helloo”.
The document is replicated to all connected clients, in
this case, User A and User B. Both clients edit the
shared document concurrently. The first concurrent
local operation is: to insert the𝑈1 = 𝑖𝑛𝑠𝑒𝑟𝑡(5, “! ”)
character “!” at the fifth position in the string
“Helloo” for it to become “Hello!o”. The second
concurrent local operation is: 𝑈2 = 𝑑𝑒𝑙𝑒𝑡𝑒(5, 1)
deletes one character starting at the fifth position of
the string to become “Hello”. Both and are𝑈1 𝑈2
executed locally on their respective replicated state
and take effect instantaneously.

Afterwards, local concurrent operations and𝑈1 𝑈2
will be sent to the central server for transformation
and replaying the transformed operations to all
connected replicas. On the central server, will be𝑈2
transformed against as:𝑈1
𝑈2' = 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑈2, 𝑈1) = 𝑑𝑒𝑙𝑒𝑡𝑒(6, 1)
which will increment the position of the character to
be deleted as to preserve User B’s intention. As for
U1, it will be transformed as:
𝑈1' = 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑈1, 𝑈2) = 𝑖𝑛𝑠𝑒𝑟𝑡(5, "! ")
which is identical to the original local concurrent
operation because it does not conflict with .𝑈1 𝑈2

Figure 1 (Typical life-cycle of an OT system transforming
operations for consistency maintenance)

III. OT CAPABILITIES

https://www.zotero.org/google-docs/?pJhfN5
https://www.zotero.org/google-docs/?7D2e4K
https://www.zotero.org/google-docs/?EcArqS
https://www.zotero.org/google-docs/?yuL6cY
https://www.zotero.org/google-docs/?C13M6J
https://www.zotero.org/google-docs/?Yualc9

Three decades ago, OT was invented to solve
only collaborative editing in documents, with a focus
on consistency maintenance and automatic merge
conflict resolution (both explained in the previous
section). However, research expanded to further areas
which enabled more capabilities in collaborative
applications, such as operation compression,
collaborative graphic design tools, and database
synchronization. We will explore the most important
OT capabilities that resulted from research in this
section.

A. Locking

OT supports optional locking that can be
complementary in preserving data integrity. For
example, if User1 wrote the sentence “Coffee contain
caffeine”, then two other users noticed the grammar
mistake and decided to solve it. The first may correct
it as “Coffee contains caffeine” and the second may
correct it as “Coffee can contain caffeine” at the exact
same time. The end result would be “Coffee can
contains caffeine” which is incorrect. However, with
locking, an editor can get a lock on a specific section
in the document before modifying it, thus ensuring
correct user intention, and excluding potential
conflicts [11].

B. Transparent Adaptation

Transparent Adaptation (TA) is a technology that
fully depends on OT. TA can take an existing single
user application and convert it to a multi-user one
without altering the source code of that application. It
will also grant all of the OT collaborative capabilities
to that application [12]. See Figure 2 that explains the
different layers needed to implement TA.

Figure 2 (Basic outline of a TA system)

1. Layer 1: the Single-user Application (SA)
possibly any existing single-user application
(e.g. Windows NotePad). An SA only
provides the user with a user interface for a
single-user. It should not complicate the
interface or even know there are multiple
users editing the document.

2. Layer 2: the Collaboration Adaptor (CA).
The CA offers collaborative features that are
distinct to each application. The CA
communicates with the SA API (Application
Programming Interface) to enhance the SA
with collaboration features, without altering
the source code of the SA. The CA plays a
critical role in transforming the SA into a
Collaborative Single-user Application
(CoSA) by bridging the SA and the
underlying OT-powered Generic
Collaboration Engine, and in extending
generic OT-based collaboration features to
support different single-user applications.

3. Layer 3: Generic Collaboration Engine
(GCE). The GCE supports OT-powered
collaboration features in consistency
maintenance, concurrency control,
workspace awareness, interaction control,
etc. It is a generic layer and can be applied
to a wide variety of applications.

https://www.zotero.org/google-docs/?kOBujE
https://www.zotero.org/google-docs/?qwXc1y

Single-user functions (SA) are distinguished from
multi-user collaboration capabilities, and
application-specific collaboration capabilities (CA)
are distinguished from generic collaboration features
in the TA reference design (GCE). The job of
converting a single-user application is simplified to
investigating, designing, and implementing a new CA
for this new application using this architecture and
the reusable GCE component [12], [13].

C. Group undo

Undo operations are necessary to ensure
collaborative software reliability. Users should not
abstain from using collaborative software because
they can not expect the outcome of an undo
operation. Several attempts were made in the last two
decades to perfect the undo operation. The first
method introduced is called DistEdit [14], it allows
undo operations back and forth. However, if the undo
operation was conflicting with another operation, it
becomes undoable. The second approach is called
adOPTed, it is a system where each user can undo all
their operations as long as it’s their operations only
and using OT. The third method is called REDUCE
[15], it also uses OT and its time complexity is O(N).

IV. CONFLICT-FREE REPLICATED DATA TYPE

Owing to the rise in popularity of collaborative
software, further research into algorithms and
collaborative editing led to the emergence of
Conflict-free Replicated Data Types (CRDT). OTs
are often described as an “incorrect, complex and
inefficient technique” [8]. This is due to its
complexity and edge cases — some OT
implementations have been formally proven to
diverge after a valid sequence of operations, while
others evade attempts of formal proof due to the
sheer complexity of the implementation [16]. As
mentioned earlier in this paper, OT requires a central
server to function, which requires at minimum,
trusting the central server (see Figure 3). Thus,
another major reason for research into CRDTs is their
support for decentralization, i.e: their ability to
operate without a central server. The nature of a
globally connected network of modern clouds means
that two users sitting in the same room, working
concurrently on the same file, are required to utilize

the internet to propagate changes amongst
themselves. See Figure 4.

Figure 3 (Typical OT network topology illustration)

Figure 4 (Inflexibility of node-to-node communication in an
OT network topology illustration)

CRDTs guarantee that all data replicas converge
towards a deterministic value when merged [17]. The
CAP theorem states that designers of distributed
systems have to contend with favoring either strong
consistency or availability in order to deal with
network partitioning [18]. Consistency means
guaranteeing that each read receives the most recent
write or an error. Availability means that each read
returns a response, which could be stale, but not an

https://www.zotero.org/google-docs/?Qh08se
https://www.zotero.org/google-docs/?9Tj42g
https://www.zotero.org/google-docs/?UtOEfp
https://www.zotero.org/google-docs/?Oe7rFE
https://www.zotero.org/google-docs/?E3WYdc
https://www.zotero.org/google-docs/?zFSccL
https://www.zotero.org/google-docs/?YUVD9T

error. Since network faults are a built-in assumption
in any internet-based environment, and given the
nature of most internet applications, availability is
usually favored over strong consistency [19].

A. Strong Consistency & Eventual Consistency

A distributed system is said to be strongly
consistent if all of its nodes see all requests coming in
sequentially. This means that for any given
deterministic object, all nodes in a strongly consistent
system will see the same sequence of write
operations. This strong consistency offers
non-byzantine fault-tolerance, at the expense of
adding a bottleneck to the system. This bottleneck
represents the increased latency it takes to propagate
changes among the nodes. This latency includes both
network latency and the time it takes to arrive at a
consensus among the nodes [20].

Such consensus algorithms and protocols, for
example Paxos [21] or Raft [22]. Paxos guarantees
that a strong consistent state is reached among nodes
in a partitioned network by picking one value among
several proposed values. On the other hand, Raft
archives a strong consistent state by electing a leader
node that handles and broadcasts all writes.

On the other hand, eventual consistency prioritizes
availability of nodes by accepting write or update
requests coming to any node. An eventually
consistent system will respond to any read —
regardless of the node — with the data this node
contains. However, there are no guarantees that it is
the most up-to-date data. It is worth mentioning again
that this is usually the priority for real-world systems
— consistency anomalies are usually dealt with by
external compensation mechanisms. Even bank
accounts, the most popular example to illustrate the
need for strong consistency, are usually implemented
with only eventual consistency guarantees 1 [19].

However, the needs of users of collaborative,
groupware applications are orthogonal to the
consensus algorithm approach. This is because in
collaborative software, the merging of writes sensibly

1 Blockchain networks are another proliferating technology
that achieves strong consistency through consensus based on
proof-of-work (or more recently proof-of-stake) [23]. Blockchain
networks also add the dimension of trust to the CAP theorem [24].

is the desired behavior — no writes to any node
should be discarded. Additionally, a network partition
constraint is a valid assumption in collaborative
applications, since users go offline and expect to
propagate their changes upon reconnection.
Moreover, the user interface should expose a
tentative state such that the user can interact with
their data while it’s being synced in the background.
Those requirements necessitated more research into
other collaboration algorithms.

B. Total order, partial order, and join semilattice

To explain how CRDTs came into existence, we
must first take a look at lattice theory. In the broadest
sense, order is a formalization of the general idea of
comparison over elements of a set. To create an order,
we have to first define a binary (dyadic) relationship,
which by definition can be applied to any two
elements of a set. For a set of natural numbers , we𝑆
define the binary relation to mean less than or≤
equal. Thus we can say that , and ,3 ≤ 7 4 ≤ 7
thereby creating an order. Since all elements of the
set are comparable, i.e we can apply the operant𝑆 ≤
to any two elements of the set, it can be said that the
elements of the set are in total order [25].𝑆

Given a second set , the operant could be defined𝑇 ≤
as ‘descendent-of’. In this case, we can say

and .𝑆𝑜𝑛 ≤ 𝐹𝑎𝑡ℎ𝑒𝑟 𝐷𝑎𝑢𝑔ℎ𝑡𝑒𝑟 ≤ 𝐹𝑎𝑡ℎ𝑒𝑟
However, and would be𝐷𝑎𝑢𝑔ℎ𝑡𝑒𝑟 𝑆𝑜𝑛
incomparable given that the operant denotes an≤
ancestry relationship. We denote that incomparability
by writing . Those elements are part𝑆𝑜𝑛 ∥ 𝐷𝑎𝑢𝑔ℎ𝑡𝑒𝑟
of a partially-ordered set, or a poset.

A second operation that can be applied to elements of
a set is the join operation. Given two elements of𝑎, 𝑏
set , we can apply the join operant if there is at𝑆 ∨
least one supremum (least upper bound, LUB),
defined as an element of that is greater than or𝑆
equal to . For example, in the poset containing𝑎, 𝑏 𝑇
elements {𝐶𝑎𝑖𝑟𝑜, 𝐸𝑔𝑦𝑝𝑡, 𝑁𝑎𝑖𝑟𝑜𝑏𝑖, 𝐾𝑒𝑛𝑦𝑎, 𝐴𝑓𝑟𝑖𝑐𝑎,

, the result of𝑇𝑜𝑘𝑦𝑜, 𝐽𝑎𝑝𝑎𝑛, 𝐴𝑠𝑖𝑎}
is equal to , since it’s the𝐶𝑎𝑖𝑟𝑜 ∨ 𝑁𝑎𝑖𝑟𝑜𝑏𝑖 𝐴𝑓𝑟𝑖𝑐𝑎

least upper bound to those two elements. See Figure
5.

https://www.zotero.org/google-docs/?hjCl69
https://www.zotero.org/google-docs/?wYqboq
https://www.zotero.org/google-docs/?NNNDeR
https://www.zotero.org/google-docs/?irGFqZ
https://www.zotero.org/google-docs/?tucCZj
https://www.zotero.org/google-docs/?iR5W8L
https://www.zotero.org/google-docs/?JjB1Mc
https://www.zotero.org/google-docs/?9rro6v

Figure 5 (Least Upper Bound example)

Thus, the join of elements (written) in𝑎, 𝑏 𝑎 ∨ 𝑏
the order , is the least upper bound of(𝑆, ≤) 𝑆
according to the defined order. In practice, this means
that we are looking for the smallest element which𝑥
satisfies and . In the case of total𝑎 ≤ 𝑥 𝑏 ≤ 𝑥
order, i.e: when each pair of elements in the set are
comparable to one another, the result of joins is the
larger element of .𝑎, 𝑏

A join semilattice is an order such that for(𝑆, ≤)
each there exists a join . Such joins𝑎, 𝑏 ∈ 𝑆 𝑎 ∨ 𝑏
obey three laws:

1) Commutativity: 𝑎 ∨ 𝑏 = 𝑏 ∨ 𝑎
2) Associativity:

(𝑎 ∨ 𝑏) ∨ 𝑐 = 𝑎 ∨ (𝑏 ∨ 𝑐)
3) Idempotence: 𝑎 ∨ 𝑎 = 𝑎

Conflict is defined by Shapiro et al as “a combination
of concurrent updates which may be individually
correct, but that, taken together, would violate some
invariant.” [17]. The aforementioned three properties
are what enables us to create CRDTs: Conflict-Free
Replicated Data Types, which, when merged,
converge towards the same result, without the need
for resolving conflicts.

C. Vector Clocks & Grow-only Counter

Grow-only Counter CRDT, also known as
GCounter, is a counter whose value can only
increase. All possible values of the counter, or its

states, are considered elements of a set. For that state
to be successfully replicated using CRDTs, we must
be able to create an order of that set using a binary
relation, which is happened-before [7]. We also need
a way to join any two elements of that set-state, for
our purposes we call that the function.𝑚𝑒𝑟𝑔𝑒()

Building on the work of Lamport’s logical clocks,
vector clocks were developed to capture casualty
among events in a distributed system [20]. A vector
timestamp consists of integers of logical timestamps,
where each element represents a process or a replica,
for example . We can define a “happened(2, 5, 8)
before” comparison relationship (also denoted as≤

) among vector timestamps if every element of→
vector timestamp is less than or equal the𝑣1
corresponding element in vector timestamp .𝑣2

As shown in diagram x, the partial and causal order
of the system are preserved: at any given time, we
can define a happened-before relationship. A system
can also be viewed as a join semilattice, visualized in
Figure 6:

Figure 6 (Join semilattice example)

Our G-Counter can be modeled as a system of 3
replicas. Each replica implements two functions:

, which increases the counter in a given𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡()
replica by 1, and , which returns the value of𝑣𝑎𝑙𝑢𝑒()
the global counter, i.e: our system. A third function,

. Figure 7 shows the state of𝑚𝑒𝑟𝑔𝑒(𝑠𝑡𝑎𝑡𝑒
𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔

)

the system:

https://www.zotero.org/google-docs/?5LeokM
https://www.zotero.org/google-docs/?9YgRcD
https://www.zotero.org/google-docs/?XvrVIY

Figure 7 (Life-cycle of a GCounter CRDT)

At first glance it seems that each replica can pass its
value to another replica, then change its value to the
summation of the two values. This is bound to fail,
since it violates the principle of idempotency. Each
number in a circle represents the number of times the
function was called on a given replica.𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡()
Thus the total value of our system should converge to
17, since that’s the sum of [3, 6, 8]. Thus we can
represent the state of each node as an element in an
integer vector [26].

In this case, our function takes in a vector𝑚𝑒𝑟𝑔𝑒()
of values, of which each element represents the value
of a replica, and merges them by taking the highest
value for each element. The function, which𝑣𝑎𝑙𝑢𝑒()
returns the value of the whole system, would then be
implemented as the sum of all elements in the state
vector.

V. CONCLUSION

In conclusion, Operation Transformation
algorithms have served their purpose for the last three
decades. However, their increasing implementation
complexity and inflexibility with respect to
decentralized network topologies have rendered them
less than desirable for modern applications. On the
other hand, interest in decentralized, peer-to-peer
applications have spurred new research into
collaborative technologies. Conflict-free Replicated
Data Types are rapidly gaining popularity as
collaborative and local-first applications supplant
traditional web applications.

Since collaborative text editing is the most ubiquitous
collaborative application, many CRDTs focus on
modeling text editing as its basis. To that end, the
software libraries automerge and yjs have emerged as
valid open-source solutions for building collaborative
web applications. Both libraries are written in
JavaScript and use JSON as the data representation
layer, thus making them versatile in different
environments, with emphasis on web browsers. The
strong mathematical underpinnings of CRDTs, along
with their relative ease of implementation to OT,
have made them a strong contender to dominate the
collaborative application space. Future research
should be undertaken to further integrate CRDTs into
real-world systems.

REFERENCES

[1] E. Liu, “A CRDT-based file synchronization
system,” 2021, Accessed: Nov. 06, 2021.
[Online]. Available:
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/112
50/2778095

[2] J. Harris, “What’s different about the new
Google Docs?,” Google Drive Blog, May 11,
2010.
https://drive.googleblog.com/2010/05/whats-diff
erent-about-new-google-docs.html (accessed
Nov. 27, 2021).

[3] C. A. Ellis and S. J. Gibbs, “Concurrency
control in groupware systems,” in Proceedings
of the 1989 ACM SIGMOD international
conference on Management of data, New York,
NY, USA, Jun. 1989, pp. 399–407. doi:
10.1145/67544.66963.

https://www.zotero.org/google-docs/?PxVcea
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA

[4] C. Sun and C. Ellis, “Operational transformation
in real-time group editors: issues, algorithms,
and achievements,” in Proceedings of the 1998
ACM conference on Computer supported
cooperative work, New York, NY, USA, Nov.
1998, pp. 59–68. doi: 10.1145/289444.289469.

[5] N. Preguica, J. M. Marques, M. Shapiro, and M.
Letia, “A Commutative Replicated Data Type
for Cooperative Editing,” in 2009 29th IEEE
International Conference on Distributed
Computing Systems, Montreal, Quebec, Canada,
Jun. 2009, pp. 395–403. doi:
10.1109/ICDCS.2009.20.

[6] S. Weiss, P. Urso, and P. Molli, “Logoot: A
Scalable Optimistic Replication Algorithm for
Collaborative Editing on P2P Networks,” in
2009 29th IEEE International Conference on
Distributed Computing Systems, Jun. 2009, pp.
404–412. doi: 10.1109/ICDCS.2009.75.

[7] L. Lamport, “Time, clocks, and the ordering of
events in a distributed system,” Commun. ACM,
vol. 21, no. 7, pp. 558–565, Jul. 1978, doi:
10.1145/359545.359563.

[8] C. Sun, D. Sun, A. Ng, W. Cai, and B. Cho,
“Real Differences between OT and CRDT under
a General Transformation Framework for
Consistency Maintenance in Co-Editors,” Proc.
ACM Hum.-Comput. Interact., vol. 4, no.
GROUP, Art. no. GROUP, Jan. 2020, doi:
10.1145/3375186.

[9] D. A. Nichols, P. Curtis, M. Dixon, and J.
Lamping, “High-latency, low-bandwidth
windowing in the Jupiter collaboration system,”
in Proceedings of the 8th annual ACM
symposium on User interface and software
technology, New York, NY, USA, Dec. 1995, pp.
111–120. doi: 10.1145/215585.215706.

[10] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen,
“Achieving convergence, causality preservation,
and intention preservation in real-time
cooperative editing systems,” ACM Trans.
Comput.-Hum. Interact., vol. 5, no. 1, pp.
63–108, Mar. 1998, doi:
10.1145/274444.274447.

[11] C. Sun and R. Sosič, “Optimal locking
integrated with operational transformation in
distributed real-time group editors,” in
Proceedings of the eighteenth annual ACM
symposium on Principles of distributed
computing, New York, NY, USA, May 1999, pp.
43–52. doi: 10.1145/301308.301322.

[12] C. Sun, S. Xia, D. Sun, D. Chen, H. Shen, and
W. Cai, “Transparent adaptation of single-user
applications for multi-user real-time
collaboration,” ACM Trans. Comput.-Hum.
Interact., vol. 13, no. 4, pp. 531–582, Dec. 2006,

doi: 10.1145/1188816.1188821.
[13] Agustina, F. Liu, S. Xia, H. Shen, and C. Sun,

“CoMaya: incorporating advanced collaboration
capabilities into 3d digital media design tools,”
in Proceedings of the 2008 ACM conference on
Computer supported cooperative work, New
York, NY, USA, Nov. 2008, pp. 5–8. doi:
10.1145/1460563.1460566.

[14] A. Prakash and M. J. Knister, “A framework for
undoing actions in collaborative systems,” ACM
Trans. Comput.-Hum. Interact., vol. 1, no. 4, pp.
295–330, Dec. 1994, doi:
10.1145/198425.198427.

[15] C. Sun, “Undo any operation at any time in
group editors,” in Proceedings of the 2000 ACM
conference on Computer supported cooperative
work, New York, NY, USA, Dec. 2000, pp.
191–200. doi: 10.1145/358916.358990.

[16] D. Li and R. Li, “An Admissibility-Based
Operational Transformation Framework for
Collaborative Editing Systems,” Comput.
Support. Coop. Work, vol. 19, no. 1, pp. 1–43,
Feb. 2010, doi: 10.1007/s10606-009-9103-1.

[17] M. Shapiro, N. Preguiça, C. Baquero, and M.
Zawirski, “Conflict-free Replicated Data Types,”
report, Jul. 2011. Accessed: Jan. 08, 2022.
[Online]. Available:
https://hal.inria.fr/inria-00609399

[18] M. Kleppmann, Designing data-intensive
applications: the big ideas behind reliable,
scalable, and maintainable systems, First
edition. Boston: O’Reilly Media, 2017.

[19] P. Bailis and A. Ghodsi, “Eventual Consistency
Today: Limitations, Extensions, and Beyond:
How can applications be built on eventually
consistent infrastructure given no guarantee of
safety?,” Queue, vol. 11, no. 3, pp. 20–32, Mar.
2013, doi: 10.1145/2460276.2462076.

[20] M. van Steen and A. S. Tanenbaum, Distributed
systems, Third edition, Version 3.01.
Erscheinungsort nicht ermittelbar: Maarten van
Steen, 2017.

[21] L. Lamport, D. Malkhi, and L. Zhou, “Vertical
paxos and primary-backup replication,” in
Proceedings of the 28th ACM symposium on
Principles of distributed computing - PODC ’09,
Calgary, AB, Canada, 2009, p. 312. doi:
10.1145/1582716.1582783.

[22] D. Ongaro and J. Ousterhout, “In search of an
understandable consensus algorithm,” in
Proceedings of the 2014 USENIX conference on
USENIX Annual Technical Conference, USA,
Jun. 2014, pp. 305–320.

[23] F. Casino, T. K. Dasaklis, and C. Patsakis, “A
systematic literature review of blockchain-based
applications: Current status, classification and

https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA

open issues,” Telemat. Inform., vol. 36, pp.
55–81, Mar. 2019, doi:
10.1016/j.tele.2018.11.006.

[24] K. Finlow-Bates, “Adding Trust to CAP:
Blockchain as a Strong Eventual Consistency
Recovery Strategy,” Sep. 2017, p. 12. [Online].
Available:
https://www.chainfrog.com/wp-content/uploads/
2017/09/CAP-paper.pdf

[25] B. A. Davey and H. A. Priestley, Introduction to
Lattices and Order. Cambridge: Cambridge
University Press, 2002. Accessed: Jan. 08, 2022.
[Online]. Available:
https://doi.org/10.1017/CBO9780511809088

[26] M. Shapiro, N. Preguiça, C. Baquero, and M.
Zawirski, “A comprehensive study of
Convergent and Commutative Replicated Data
Types,” report, Inria – Centre
Paris-Rocquencourt ; INRIA, 2011. Accessed:
Jan. 14, 2022. [Online]. Available:
https://hal.inria.fr/inria-00555588

https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA
https://www.zotero.org/google-docs/?1EHQiA

